Opcode/Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
F2 0F 5E /r DIVSD xmm1, xmm2/m64 | A | V/V | SSE2 | Divide low double-precision floating-point value in xmm1 by low double-precision floating-point value in xmm2/m64. |
VEX.LIG.F2.0F.WIG 5E /r VDIVSD xmm1, xmm2, xmm3/m64 | B | V/V | AVX | Divide low double-precision floating-point value in xmm2 by low double-precision floating-point value in xmm3/m64. |
EVEX.LIG.F2.0F.W1 5E /r VDIVSD xmm1 {k1}{z}, xmm2, xmm3/m64{er} | C | V/V | AVX512F | Divide low double-precision floating-point value in xmm2 by low double-precision floating-point value in xmm3/m64. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
A | NA | ModRM:reg (r, w) | ModRM:r/m (r) | NA | NA |
B | NA | ModRM:reg (w) | VEX.vvvv | ModRM:r/m (r) | NA |
C | Tuple1 Scalar | ModRM:reg (w) | EVEX.vvvv | ModRM:r/m (r) | NA |
Divides the low double-precision floating-point value in the first source operand by the low double-precision floating-point value in the second source operand, and stores the double-precision floating-point result in the destination operand. The second source operand can be an XMM register or a 64-bit memory location. The first source and destination are XMM registers.
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAXVL-1:64) of the corresponding ZMM destination register remain unchanged.
VEX.128 encoded version: The first source operand is an xmm register encoded by VEX.vvvv. The quadword at bits 127:64 of the destination operand is copied from the corresponding quadword of the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.
EVEX.128 encoded version: The first source operand is an xmm register encoded by EVEX.vvvv. The quadword element of the destination operand at bits 127:64 are copied from the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.
EVEX version: The low quadword element of the destination is updated according to the writemask.
Software should ensure VDIVSD is encoded with VEX.L=0. Encoding VDIVSD with VEX.L=1 may encounter unpredictable behavior across different processor generations.
IF (EVEX.b = 1) AND SRC2 *is a register* THEN SET_RM(EVEX.RC); ELSE SET_RM(MXCSR.RM); FI; IF k1[0] or *no writemask* THEN DEST[63:0]←SRC1[63:0] / SRC2[63:0] ELSE IF *merging-masking* ; merging-masking THEN *DEST[63:0] remains unchanged* ELSE ; zeroing-masking THEN DEST[63:0]←0 FI; FI; DEST[127:64] ← SRC1[127:64] DEST[MAXVL-1:128] ← 0
DEST[63:0]←SRC1[63:0] / SRC2[63:0] DEST[127:64] ←SRC1[127:64] DEST[MAXVL-1:128] ←0
DEST[63:0]←DEST[63:0] / SRC[63:0] DEST[MAXVL-1:64] (Unmodified)
VDIVSD __m128d _mm_mask_div_sd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VDIVSD __m128d _mm_maskz_div_sd( __mmask8 k, __m128d a, __m128d b);
VDIVSD __m128d _mm_div_round_sd( __m128d a, __m128d b, int);
VDIVSD __m128d _mm_mask_div_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VDIVSD __m128d _mm_maskz_div_round_sd( __mmask8 k, __m128d a, __m128d b, int);
DIVSD __m128d _mm_div_sd (__m128d a, __m128d b);
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.