Opcode/Instruction | Op / En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
NP 0F 10 /r MOVUPS xmm1, xmm2/m128 | A | V/V | SSE | Move unaligned packed single-precision floating-point from xmm2/mem to xmm1. |
NP 0F 11 /r MOVUPS xmm2/m128, xmm1 | B | V/V | SSE | Move unaligned packed single-precision floating-point from xmm1 to xmm2/mem. |
VEX.128.0F.WIG 10 /r VMOVUPS xmm1, xmm2/m128 | A | V/V | AVX | Move unaligned packed single-precision floating-point from xmm2/mem to xmm1. |
VEX.128.0F.WIG 11 /r VMOVUPS xmm2/m128, xmm1 | B | V/V | AVX | Move unaligned packed single-precision floating-point from xmm1 to xmm2/mem. |
VEX.256.0F.WIG 10 /r VMOVUPS ymm1, ymm2/m256 | A | V/V | AVX | Move unaligned packed single-precision floating-point from ymm2/mem to ymm1. |
VEX.256.0F.WIG 11 /r VMOVUPS ymm2/m256, ymm1 | B | V/V | AVX | Move unaligned packed single-precision floating-point from ymm1 to ymm2/mem. |
EVEX.128.0F.W0 10 /r VMOVUPS xmm1 {k1}{z}, xmm2/m128 | C | V/V | AVX512VL AVX512F | Move unaligned packed single-precision floating-point values from xmm2/m128 to xmm1 using writemask k1. |
EVEX.256.0F.W0 10 /r VMOVUPS ymm1 {k1}{z}, ymm2/m256 | C | V/V | AVX512VL AVX512F | Move unaligned packed single-precision floating-point values from ymm2/m256 to ymm1 using writemask k1. |
EVEX.512.0F.W0 10 /r VMOVUPS zmm1 {k1}{z}, zmm2/m512 | C | V/V | AVX512F | Move unaligned packed single-precision floating-point values from zmm2/m512 to zmm1 using writemask k1. |
EVEX.128.0F.W0 11 /r VMOVUPS xmm2/m128 {k1}{z}, xmm1 | D | V/V | AVX512VL AVX512F | Move unaligned packed single-precision floating-point values from xmm1 to xmm2/m128 using writemask k1. |
EVEX.256.0F.W0 11 /r VMOVUPS ymm2/m256 {k1}{z}, ymm1 | D | V/V | AVX512VL AVX512F | Move unaligned packed single-precision floating-point values from ymm1 to ymm2/m256 using writemask k1. |
EVEX.512.0F.W0 11 /r VMOVUPS zmm2/m512 {k1}{z}, zmm1 | D | V/V | AVX512F | Move unaligned packed single-precision floating-point values from zmm1 to zmm2/m512 using writemask k1. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
A | NA | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
B | NA | ModRM:r/m (w) | ModRM:reg (r) | NA | NA |
C | Full Mem | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
D | Full Mem | ModRM:r/m (w) | ModRM:reg (r) | NA | NA |
Note: VEX.vvvv and EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
EVEX.512 encoded version:
Moves 512 bits of packed single-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a ZMM register from a 512-bit float32 memory location, to store the contents of a ZMM register into memory. The destination operand is updated according to the writemask.
VEX.256 and EVEX.256 encoded versions:
Moves 256 bits of packed single-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers. Bits (MAXVL-1:256) of the destination register are zeroed.
Moves 128 bits of packed single-precision floating-point values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers.
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding destination register remain unchanged.
When the source or destination operand is a memory operand, the operand may be unaligned without causing a general-protection exception (#GP) to be generated.
VEX.128 and EVEX.128 encoded versions: Bits (MAXVL-1:128) of the destination register are zeroed.
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j←0 TO KL-1 i←j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i]←SRC[i+31:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE DEST[i+31:i]←0 ; zeroing-masking FI FI; ENDFOR DEST[MAXVL-1:VL] ← 0
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j←0 TO KL-1 i←j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i]←SRC[i+31:i] ELSE *DEST[i+31:i] remains unchanged* ; merging-masking FI; ENDFOR;
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j←0 TO KL-1 i←j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i]←SRC[i+31:i] ELSE IF *merging-masking* THEN *DEST[i+31:i] remains unchanged* ELSE DEST[i+31:i]←0 ; zeroing-masking FI FI; ENDFOR DEST[MAXVL-1:VL] ← 0
DEST[255:0] ← SRC[255:0] DEST[MAXVL-1:256] ← 0
DEST[255:0] ← SRC[255:0]
DEST[127:0] ← SRC[127:0] DEST[MAXVL-1:128] ← 0
DEST[127:0] ← SRC[127:0] DEST[MAXVL-1:128] (Unmodified)
DEST[127:0] ← SRC[127:0]
VMOVUPS __m512 _mm512_loadu_ps( void * s);
VMOVUPS __m512 _mm512_mask_loadu_ps(__m512 a, __mmask16 k, void * s);
VMOVUPS __m512 _mm512_maskz_loadu_ps( __mmask16 k, void * s);
VMOVUPS void _mm512_storeu_ps( void * d, __m512 a);
VMOVUPS void _mm512_mask_storeu_ps( void * d, __mmask8 k, __m512 a);
VMOVUPS __m256 _mm256_mask_loadu_ps(__m256 a, __mmask8 k, void * s);
VMOVUPS __m256 _mm256_maskz_loadu_ps( __mmask8 k, void * s);
VMOVUPS void _mm256_mask_storeu_ps( void * d, __mmask8 k, __m256 a);
VMOVUPS __m128 _mm_mask_loadu_ps(__m128 a, __mmask8 k, void * s);
VMOVUPS __m128 _mm_maskz_loadu_ps( __mmask8 k, void * s);
VMOVUPS void _mm_mask_storeu_ps( void * d, __mmask8 k, __m128 a);
MOVUPS __m256 _mm256_loadu_ps ( float * p);
MOVUPS void _mm256 _storeu_ps( float *p, __m256 a);
MOVUPS __m128 _mm_loadu_ps ( float * p);
MOVUPS void _mm_storeu_ps( float *p, __m128 a);
None
Non-EVEX-encoded instruction, see Exceptions Type 4.
Note treatment of #AC varies;
EVEX-encoded instruction, see Exceptions Type E4.nb.
#UD | If EVEX.vvvv != 1111B or VEX.vvvv != 1111B. |