Opcode/Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
VEX.LIG.66.0F38.W0 99 /r VFMADD132SS xmm1, xmm2, xmm3/m32 | A | V/V | FMA | Multiply scalar single-precision floating-point value from xmm1 and xmm3/m32, add to xmm2 and put result in xmm1. |
VEX.LIG.66.0F38.W0 A9 /r VFMADD213SS xmm1, xmm2, xmm3/m32 | A | V/V | FMA | Multiply scalar single-precision floating-point value from xmm1 and xmm2, add to xmm3/m32 and put result in xmm1. |
VEX.LIG.66.0F38.W0 B9 /r VFMADD231SS xmm1, xmm2, xmm3/m32 | A | V/V | FMA | Multiply scalar single-precision floating-point value from xmm2 and xmm3/m32, add to xmm1 and put result in xmm1. |
EVEX.LIG.66.0F38.W0 99 /r VFMADD132SS xmm1 {k1}{z}, xmm2, xmm3/m32{er} | B | V/V | AVX512F | Multiply scalar single-precision floating-point value from xmm1 and xmm3/m32, add to xmm2 and put result in xmm1. |
EVEX.LIG.66.0F38.W0 A9 /r VFMADD213SS xmm1 {k1}{z}, xmm2, xmm3/m32{er} | B | V/V | AVX512F | Multiply scalar single-precision floating-point value from xmm1 and xmm2, add to xmm3/m32 and put result in xmm1. |
EVEX.LIG.66.0F38.W0 B9 /r VFMADD231SS xmm1 {k1}{z}, xmm2, xmm3/m32{er} | B | V/V | AVX512F | Multiply scalar single-precision floating-point value from xmm2 and xmm3/m32, add to xmm1 and put result in xmm1. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
A | NA | ModRM:reg (r, w) | VEX.vvvv (r) | ModRM:r/m (r) | NA |
B | Tuple1 Scalar | ModRM:reg (r, w) | EVEX.vvvv (r) | ModRM:r/m (r) | NA |
Performs a SIMD multiply-add computation on single-precision floating-point values using three source operands and writes the multiply-add results in the destination operand. The destination operand is also the first source operand. The first and second operands are XMM registers. The third source operand can be a XMM register or a 32-bit memory location.
VFMADD132SS: Multiplies the low single-precision floating-point value from the first source operand to the low single-precision floating-point value in the third source operand, adds the infinite precision intermediate result to the low single-precision floating-point value in the second source operand, performs rounding and stores the resulting single-precision floating-point value to the destination operand (first source operand).
VFMADD213SS: Multiplies the low single-precision floating-point value from the second source operand to the low single-precision floating-point value in the first source operand, adds the infinite precision intermediate result to the low single-precision floating-point value in the third source operand, performs rounding and stores the resulting single-precision floating-point value to the destination operand (first source operand).
VFMADD231SS: Multiplies the low single-precision floating-point value from the second source operand to the low single-precision floating-point value in the third source operand, adds the infinite precision intermediate result to the low single-precision floating-point value in the first source operand, performs rounding and stores the resulting single-precision floating-point value to the destination operand (first source operand).
VEX.128 and EVEX encoded version: The destination operand (also first source operand) is encoded in reg_field. The second source operand is encoded in VEX.vvvv/EVEX.vvvv. The third source operand is encoded in rm_field. Bits 127:32 of the destination are unchanged. Bits MAXVL-1:128 of the destination register are zeroed.
EVEX encoded version: The low doubleword element of the destination is updated according to the writemask.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction column.
In the operations below, “*” and “+” symbols represent multiplication and addition with infinite precision inputs and outputs (no rounding).
IF (EVEX.b = 1) and SRC3 *is a register* THEN SET_RM(EVEX.RC); ELSE SET_RM(MXCSR.RM); FI; IF k1[0] or *no writemask* THEN DEST[31:0]←RoundFPControl(DEST[31:0]*SRC3[31:0] + SRC2[31:0]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[31:0] remains unchanged* ELSE ; zeroing-masking THEN DEST[31:0]←0 FI; FI; DEST[127:32] ← DEST[127:32] DEST[MAXVL-1:128] ← 0
IF (EVEX.b = 1) and SRC3 *is a register* THEN SET_RM(EVEX.RC); ELSE SET_RM(MXCSR.RM); FI; IF k1[0] or *no writemask* THEN DEST[31:0]←RoundFPControl(SRC2[31:0]*DEST[31:0] + SRC3[31:0]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[31:0] remains unchanged* ELSE ; zeroing-masking THEN DEST[31:0]←0 FI; FI; DEST[127:32] ← DEST[127:32] DEST[MAXVL-1:128] ← 0
IF (EVEX.b = 1) and SRC3 *is a register* THEN SET_RM(EVEX.RC); ELSE SET_RM(MXCSR.RM); FI; IF k1[0] or *no writemask* THEN DEST[31:0]←RoundFPControl(SRC2[31:0]*SRC3[31:0] + DEST[31:0]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[31:0]] remains unchanged* ELSE ; zeroing-masking THEN DEST[31:0]←0 FI; FI; DEST[127:32] ← DEST[127:32] DEST[MAXVL-1:128] ← 0
DEST[31:0]←RoundFPControl_MXCSR(DEST[31:0]*SRC3[31:0] + SRC2[31:0]) DEST[127:32] ←DEST[127:32] DEST[MAXVL-1:128] ←0
DEST[31:0]←RoundFPControl_MXCSR(SRC2[31:0]*DEST[31:0] + SRC3[31:0]) DEST[127:32] ←DEST[127:32] DEST[MAXVL-1:128] ←0
DEST[31:0]←RoundFPControl_MXCSR(SRC2[31:0]*SRC3[31:0] + DEST[31:0]) DEST[127:32] ←DEST[127:32] DEST[MAXVL-1:128] ←0
VFMADDxxxSS __m128 _mm_fmadd_round_ss(__m128 a, __m128 b, __m128 c, int r);
VFMADDxxxSS __m128 _mm_mask_fmadd_ss(__m128 a, __mmask8 k, __m128 b, __m128 c);
VFMADDxxxSS __m128 _mm_maskz_fmadd_ss(__mmask8 k, __m128 a, __m128 b, __m128 c);
VFMADDxxxSS __m128 _mm_mask3_fmadd_ss(__m128 a, __m128 b, __m128 c, __mmask8 k);
VFMADDxxxSS __m128 _mm_mask_fmadd_round_ss(__m128 a, __mmask8 k, __m128 b, __m128 c, int r);
VFMADDxxxSS __m128 _mm_maskz_fmadd_round_ss(__mmask8 k, __m128 a, __m128 b, __m128 c, int r);
VFMADDxxxSS __m128 _mm_mask3_fmadd_round_ss(__m128 a, __m128 b, __m128 c, __mmask8 k, int r);
VFMADDxxxSS __m128 _mm_fmadd_ss (__m128 a, __m128 b, __m128 c);
Overflow, Underflow, Invalid, Precision, Denormal
VEX-encoded instructions, see Exceptions Type 3.
EVEX-encoded instructions, see Exceptions Type E3.