Opcode/Instruction | Op/En | 32/64 bit Mode Support | CPUID | Description |
---|---|---|---|---|
EVEX.128.66.0F38.W1 B4 /r VPMADD52LUQ xmm1 {k1}{z}, xmm2,xmm3/m128/m64bcst | A | V/V | AVX512_IFMA AVX512VL | Multiply unsigned 52-bit integers in xmm2 and xmm3/m128 and add the low 52 bits of the 104-bit product to the qword unsigned integers in xmm1 using writemask k1. |
EVEX.256.66.0F38.W1 B4 /r VPMADD52LUQ ymm1 {k1}{z}, ymm2, ymm3/m256/m64bcst | A | V/V | AVX512_IFMA AVX512VL | Multiply unsigned 52-bit integers in ymm2 and ymm3/m128 and add the low 52 bits of the 104-bit product to the qword unsigned integers in ymm1 using writemask k1. |
EVEX.512.66.0F38.W1 B4 /r VPMADD52LUQ zmm1 {k1}{z}, zmm2,zmm3/m512/m64bcst | A | V/V | AVX512_IFMA | Multiply unsigned 52-bit integers in zmm2 and zmm3/m128 and add the low 52 bits of the 104-bit product to the qword unsigned integers in zmm1 using writemask k1. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
A | Full | ModRM:reg (r, w) | EVEX.vvvv (r) | ModRM:r/m(r) | NA |
Multiplies packed unsigned 52-bit integers in each qword element of the first source operand (the second operand) with the packed unsigned 52-bit integers in the corresponding elements of the second source operand (the third operand) to form packed 104-bit intermediate results. The low 52-bit, unsigned integer of each 104-bit product is added to the corresponding qword unsigned integer of the destination operand (the first operand) under the writemask k1.
The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1 at 64-bit granularity.
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j ← 0 TO KL-1 i←j * 64; IF k1[j] OR *no writemask* THEN IF src2 is Memory AND EVEX.b=1 THEN tsrc2[63:0] ← ZeroExtend64(src2[51:0]); ELSE tsrc2[63:0] ← ZeroExtend64(src2[i+51:i]; FI; Temp128[127:0] ← ZeroExtend64(src1[i+51:i]) * tsrc2[63:0]; Temp2[63:0] ← DEST[i+63:i] + ZeroExtend64(temp128[51:0]) ; DEST[i+63:i] ← Temp2[63:0]; ELSE IF *zeroing-masking* THEN DEST[i+63:i] ← 0; ELSE *merge-masking* DEST[i+63:i] is unchanged; FI; FI; ENDFOR DEST[MAX_VL-1:VL] ← 0;
VPMADD52LUQ __m512i _mm512_madd52lo_epu64( __m512i a, __m512i b, __m512i c);
VPMADD52LUQ __m512i _mm512_mask_madd52lo_epu64(__m512i s, __mmask8 k, __m512i a, __m512i b, __m512i c);
VPMADD52LUQ __m512i _mm512_maskz_madd52lo_epu64( __mmask8 k, __m512i a, __m512i b, __m512i c);
VPMADD52LUQ __m256i _mm256_madd52lo_epu64( __m256i a, __m256i b, __m256i c);
VPMADD52LUQ __m256i _mm256_mask_madd52lo_epu64(__m256i s, __mmask8 k, __m256i a, __m256i b, __m256i c);
VPMADD52LUQ __m256i _mm256_maskz_madd52lo_epu64( __mmask8 k, __m256i a, __m256i b, __m256i c);
VPMADD52LUQ __m128i _mm_madd52lo_epu64( __m128i a, __m128i b, __m128i c);
VPMADD52LUQ __m128i _mm_mask_madd52lo_epu64(__m128i s, __mmask8 k, __m128i a, __m128i b, __m128i c);
VPMADD52LUQ __m128i _mm_maskz_madd52lo_epu64( __mmask8 k, __m128i a, __m128i b, __m128i c);
None.
None
See Exceptions Type E4.