Opcode Instruction | Op / En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
F2 0F E6 /r CVTPD2DQ xmm1, xmm2/m128 | A | V/V | SSE2 | Convert two packed double-precision floating-point values in xmm2/mem to two signed doubleword integers in xmm1. |
VEX.128.F2.0F.WIG E6 /r VCVTPD2DQ xmm1, xmm2/m128 | A | V/V | AVX | Convert two packed double-precision floating-point values in xmm2/mem to two signed doubleword integers in xmm1. |
VEX.256.F2.0F.WIG E6 /r VCVTPD2DQ xmm1, ymm2/m256 | A | V/V | AVX | Convert four packed double-precision floating-point values in ymm2/mem to four signed doubleword integers in xmm1. |
EVEX.128.F2.0F.W1 E6 /r VCVTPD2DQ xmm1 {k1}{z}, xmm2/m128/m64bcst | B | V/V | AVX512VL AVX512F | Convert two packed double-precision floating-point values in xmm2/m128/m64bcst to two signed doubleword integers in xmm1 subject to writemask k1. |
EVEX.256.F2.0F.W1 E6 /r VCVTPD2DQ xmm1 {k1}{z}, ymm2/m256/m64bcst | B | V/V | AVX512VL AVX512F | Convert four packed double-precision floating-point values in ymm2/m256/m64bcst to four signed doubleword integers in xmm1 subject to writemask k1. |
EVEX.512.F2.0F.W1 E6 /r VCVTPD2DQ ymm1 {k1}{z}, zmm2/m512/m64bcst{er} | B | V/V | AVX512F | Convert eight packed double-precision floating-point values in zmm2/m512/m64bcst to eight signed doubleword integers in ymm1 subject to writemask k1. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
A | NA | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
B | Full | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
Converts packed double-precision floating-point values in the source operand (second operand) to packed signed doubleword integers in the destination operand (first operand).
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register or the embedded rounding control bits. If a converted result cannot be represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value (2w-1, where w represents the number of bits in the destination format) is returned.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1. The upper bits (MAXVL-1:256/128/64) of the corresponding destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:64) of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operand is an XMM register. Bits[127:64] of the destination XMM register are zeroed. However, the upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
(KL, VL) = (2, 128), (4, 256), (8, 512) IF (VL = 512) AND (EVEX.b = 1) THEN SET_RM(EVEX.RC); ELSE SET_RM(MXCSR.RM); FI; FOR j←0 TO KL-1 i←j * 32 k←j * 64 IF k1[j] OR *no writemask* THEN DEST[i+31:i]← Convert_Double_Precision_Floating_Point_To_Integer(SRC[k+63:k]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] ← 0 FI FI; ENDFOR DEST[MAXVL-1:VL/2] ← 0
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j←0 TO KL-1 i←j * 32 k←j * 64 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) THEN DEST[i+31:i] ← Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]) ELSE DEST[i+31:i] ← Convert_Double_Precision_Floating_Point_To_Integer(SRC[k+63:k]) FI; ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] ← 0 FI FI; ENDFOR DEST[MAXVL-1:VL/2] ← 0
DEST[31:0] ←Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]) DEST[63:32] ←Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64]) DEST[95:64] ←Convert_Double_Precision_Floating_Point_To_Integer(SRC[191:128]) DEST[127:96] ←Convert_Double_Precision_Floating_Point_To_Integer(SRC[255:192) DEST[MAXVL-1:128]←0
DEST[31:0] ←Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]) DEST[63:32] ←Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64]) DEST[MAXVL-1:64]←0
DEST[31:0] ←Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]) DEST[63:32] ←Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64]) DEST[127:64] ←0 DEST[MAXVL-1:128] (unmodified)
VCVTPD2DQ __m256i _mm512_cvtpd_epi32( __m512d a);
VCVTPD2DQ __m256i _mm512_mask_cvtpd_epi32( __m256i s, __mmask8 k, __m512d a);
VCVTPD2DQ __m256i _mm512_maskz_cvtpd_epi32( __mmask8 k, __m512d a);
VCVTPD2DQ __m256i _mm512_cvt_roundpd_epi32( __m512d a, int r);
VCVTPD2DQ __m256i _mm512_mask_cvt_roundpd_epi32( __m256i s, __mmask8 k, __m512d a, int r);
VCVTPD2DQ __m256i _mm512_maskz_cvt_roundpd_epi32( __mmask8 k, __m512d a, int r);
VCVTPD2DQ __m128i _mm256_mask_cvtpd_epi32( __m128i s, __mmask8 k, __m256d a);
VCVTPD2DQ __m128i _mm256_maskz_cvtpd_epi32( __mmask8 k, __m256d a);
VCVTPD2DQ __m128i _mm_mask_cvtpd_epi32( __m128i s, __mmask8 k, __m128d a);
VCVTPD2DQ __m128i _mm_maskz_cvtpd_epi32( __mmask8 k, __m128d a);
VCVTPD2DQ __m128i _mm256_cvtpd_epi32 (__m256d src)
CVTPD2DQ __m128i _mm_cvtpd_epi32 (__m128d src)
Invalid, Precision
See Exceptions Type 2; additionally
EVEX-encoded instructions, see Exceptions Type E2.
#UD | If VEX.vvvv != 1111B or EVEX.vvvv != 1111B. |