Opcode/Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
NP 0F 3A 0F /r ib1 PALIGNR mm1, mm2/m64, imm8 | A | V/V | SSSE3 | Concatenate destination and source operands, extract byte-aligned result shifted to the right by constant value in imm8 into mm1. |
66 0F 3A 0F /r ib PALIGNR xmm1, xmm2/m128, imm8 | A | V/V | SSSE3 | Concatenate destination and source operands, extract byte-aligned result shifted to the right by constant value in imm8 into xmm1. |
VEX.128.66.0F3A.WIG 0F /r ib VPALIGNR xmm1, xmm2, xmm3/m128, imm8 | B | V/V | AVX | Concatenate xmm2 and xmm3/m128, extract byte aligned result shifted to the right by constant value in imm8 and result is stored in xmm1. |
VEX.256.66.0F3A.WIG 0F /r ib VPALIGNR ymm1, ymm2, ymm3/m256, imm8 | B | V/V | AVX2 | Concatenate pairs of 16 bytes in ymm2 and ymm3/m256 into 32-byte intermediate result, extract byte-aligned, 16-byte result shifted to the right by constant values in imm8 from each intermediate result, and two 16-byte results are stored in ymm1. |
EVEX.128.66.0F3A.WIG 0F /r ib VPALIGNR xmm1 {k1}{z}, xmm2, xmm3/m128, imm8 | C | V/V | AVX512VL AVX512BW | Concatenate xmm2 and xmm3/m128 into a 32-byte intermediate result, extract byte aligned result shifted to the right by constant value in imm8 and result is stored in xmm1. |
EVEX.256.66.0F3A.WIG 0F /r ib VPALIGNR ymm1 {k1}{z}, ymm2, ymm3/m256, imm8 | C | V/V | AVX512VL AVX512BW | Concatenate pairs of 16 bytes in ymm2 and ymm3/m256 into 32-byte intermediate result, extract byte-aligned, 16-byte result shifted to the right by constant values in imm8 from each intermediate result, and two 16-byte results are stored in ymm1. |
EVEX.512.66.0F3A.WIG 0F /r ib VPALIGNR zmm1 {k1}{z}, zmm2, zmm3/m512, imm8 | C | V/V | AVX512BW | Concatenate pairs of 16 bytes in zmm2 and zmm3/m512 into 32-byte intermediate result, extract byte-aligned, 16-byte result shifted to the right by constant values in imm8 from each intermediate result, and four 16-byte results are stored in zmm1. |
1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
A | NA | ModRM:reg (r, w) | ModRM:r/m (r) | imm8 | NA |
B | NA | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | imm8 |
C | Full Mem | ModRM:reg (w) | EVEX.vvvv (r) | ModRM:r/m (r) | imm8 |
(V)PALIGNR concatenates the destination operand (the first operand) and the source operand (the second operand) into an intermediate composite, shifts the composite at byte granularity to the right by a constant immediate, and extracts the right-aligned result into the destination. The first and the second operands can be an MMX,
XMM or a YMM register. The immediate value is considered unsigned. Immediate shift counts larger than the 2L (i.e. 32 for 128-bit operands, or 16 for 64-bit operands) produce a zero result. Both operands can be MMX registers, XMM registers or YMM registers. When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated.
In 64-bit mode and not encoded by VEX/EVEX prefix, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding YMM destination register remain unchanged.
EVEX.512 encoded version: The first source operand is a ZMM register and contains four 16-byte blocks. The second source operand is a ZMM register or a 512-bit memory location containing four 16-byte block. The destination operand is a ZMM register and contain four 16-byte results. The imm8[7:0] is the common shift count
used for each of the four successive 16-byte block sources. The low 16-byte block of the two source operands produce the low 16-byte result of the destination operand, the high 16-byte block of the two source operands produce the high 16-byte result of the destination operand and so on for the blocks in the middle.
VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register and contains two 16-byte blocks. The second source operand is a YMM register or a 256-bit memory location containing two 16-byte block. The destination operand is a YMM register and contain two 16-byte results. The imm8[7:0] is the common shift count used for the two lower 16-byte block sources and the two upper 16-byte block sources. The low 16-byte block of the two source operands produce the low 16-byte result of the destination operand, the high 16-byte block of the two source operands produce the high 16-byte result of the destination operand. The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are zeroed.
VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.
Concatenation is done with 128-bit data in the first and second source operand for both 128-bit and 256-bit instructions. The high 128-bits of the intermediate composite 256-bit result came from the 128-bit data from the first source operand; the low 128-bits of the intermediate result came from the 128-bit data of the second source operand.
Note: VEX.L must be 0, otherwise the instruction will #UD.
0 127 0 127
temp1[127:0] = CONCATENATE(DEST,SRC)>>(imm8*8) DEST[63:0] = temp1[63:0]
temp1[255:0]←((DEST[127:0] << 128) OR SRC[127:0])>>(imm8*8); DEST[127:0] ← temp1[127:0] DEST[MAXVL-1:128] (Unmodified)
temp1[255:0]←((SRC1[127:0] << 128) OR SRC2[127:0])>>(imm8*8); DEST[127:0] ← temp1[127:0] DEST[MAXVL-1:128] ← 0
temp1[255:0]←((SRC1[127:0] << 128) OR SRC2[127:0])>>(imm8[7:0]*8); DEST[127:0] ← temp1[127:0] temp1[255:0]←((SRC1[255:128] << 128) OR SRC2[255:128])>>(imm8[7:0]*8); DEST[MAXVL-1:128] ← temp1[127:0]
(KL, VL) = (16, 128), (32, 256), (64, 512) FOR l←0 TO VL-1 with increments of 128 temp1[255:0] ← ((SRC1[l+127:l] << 128) OR SRC2[l+127:l])>>(imm8[7:0]*8); TMP_DEST[l+127:l] ← temp1[127:0] ENDFOR; FOR j←0 TO KL-1 i←j * 8 IF k1[j] OR *no writemask* THEN DEST[i+7:i]←TMP_DEST[i+7:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+7:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+7:i] = 0 FI FI; ENDFOR; DEST[MAXVL-1:VL] ← 0
PALIGNR: __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)
(V)PALIGNR: __m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n)
VPALIGNR: VPALIGNR __m512i _mm512_alignr_epi8 (__m512i a, __m512i b, const int n)
VPALIGNR __m512i _mm512_mask_alignr_epi8 (__m512i s, __mmask64 m, __m512i a, __m512i b, const int n)
VPALIGNR __m512i _mm512_maskz_alignr_epi8 ( __mmask64 m, __m512i a, __m512i b, const int n)
VPALIGNR __m256i _mm256_mask_alignr_epi8 (__m256i s, __mmask32 m, __m256i a, __m256i b, const int n)
VPALIGNR __m256i _mm256_maskz_alignr_epi8 (__mmask32 m, __m256i a, __m256i b, const int n)
VPALIGNR __m128i _mm_mask_alignr_epi8 (__m128i s, __mmask16 m, __m128i a, __m128i b, const int n)
VPALIGNR __m128i _mm_maskz_alignr_epi8 (__mmask16 m, __m128i a, __m128i b, const int n)
None.
Non-EVEX-encoded instruction, see Exceptions Type 4.
EVEX-encoded instruction, see Exceptions Type E4NF.nb.